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The method of fictitious absorption [l-3] is generalized to a class of coupled mixed problems of the theory of electroelasticity, 
thermoelasticity and mathematical physics for a multilayered inhomogeneous half-space. These problems differ in the fact that 
the symbols of the kernels of their integral equations, together with the zeros and poles, have branching points. The generalization 
is based on the use of direct numerical procedures, which enables a wide class of matrix functions of simple structure to be used, 
subject to only a single requirement, namely, the asymptotic properties of the symbols of the kernels of the corresponding integral 
operators must be preserved. In this case the form of representation of the symbol of the kernel in order to realize the numerical 
algorithms is determined by the type of medium considered. An approximate representation of the symbol of the kernel of the 
integral operator is used when it is a meromorphic function (a layer, a packet of layers, etc.). In this case, replacement of the 
symbol of an approximating function of simple structure enables the computational resources required to achieve the required 
accuracy of the solution to be reduced. The qualitative nature of the solution is preserved over the whole volume. An accurate 
representation of the symbol of the kernel of the integral operator is used when, together with the zeros and poles, it has branching 
points on the real axis (a multilayered inhomogeneous half-space) or in its neighbourhood (thermoelastic media). The use in 
this case of approximating functions is not very effective since it leads to errors in the solution not only of a quantitative nature 
but also of a qualitative nature, in view of the impossibility of constructing uniform approximations of the symbol of the kernel, 
which take into account the presence of branching points in it. 0 2002 Elsevier Science Ltd. All rights reserved. 

An investigation of coupled mixed problems of the theory of electroelasticity or thermoelasticity assumes 
the use of effective methods of solving systems of integral equations for a certain extended vector 
function, whose components, together with the components of the contact-stress vector, is either the 
distribution density of the charge (a component of the induction vector), or the thermal flux density in 
the contact region. These methods include the method of fictitious absorption ([l-3], etc.), developed 
to solve systems of equations which arise when investigating mixed problems of the theory of 
electroelasticity or thermoelasticity for media in the form of a layer or multilayered packages. The 
symbols of the kernels of such equations are meromorphic functions. However, the approach proposed 
previously ([l-3], etc.) is inapplicable to integral equations whose kernel symbols have branching points. 
Moreover, the application of this approach assumes the use of special functionally commutative matrices 
of complex structure. The approach proposed in this paper to solving systems of integral equations is 
completely free of these drawbacks. 

1. SCHEME OF THE METHOD 

Consider a system of integral equations 

kq=jj k(x, -5,x,-tl)q(4,1l)dSdrl=f(x,.xz), x1.x2 Efi 
R 

k(s, t) = -$ j j K(%a,)e 
-iUw+w)d+a2, Wa,.a,) =II L(%a2) II,“,,=, 

rl r2 

(1.1) 

The dimension of the system is determined by the type of medium and the geometry of the problem. 
In three-dimensional problems for electroelastic media, ignoring thermal effects, as well as in problems 
of thermoelasticity when there are no electric fields, N = 4. For pyroelectric media N = 5, etc. 
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The elements K&al, a~) possess the following properties [l]: 
1) they are analytical functions of two complex variables, which allow of the representation 

where P,$(al, a$ are certain polynomials and R;,,(u) are analytical functions, such that the following 
relation holds 

detK(a,,a2)=D(u) 

where D(U) is an analytical function of the variable U; 
2) the functions R,&(u) and D(u) can have a finite number of branching points and a finite number 

of real poles; 

y), 
3) as 1 ai 1 + 00 in the system of coordinates a@i(a: = al cos y + a2 sin y, ai = a2 cos y - al sin 
the following asymptotic representations hold 

K~,(a:,a~)=(a~ 1-l (umn +b,,sign a,YIII+O((a~)-')I 

where 

KL(al,al) = K,(aI cosy-ai siny,al siny+aT cosy), 

and a,,,,, = %&a~, Y> and b,,, = &,,(a~, Y> are bounded functions of the parameters. 
System (1.1) is uniquely solvable for any doubly continuous differentiable functionf(x,,x2) [l]. The 

region 52 whose boundary can have corner points, is convex. The location of the contours I, and Iz 
ensures that the radiation conditions [4] are satisfied. 

We will introduce a matrix S, the elements of which have a simple structure and possess asymptotic 
properties of the corresponding elements of the matrix K. It can be shown that the matrix 

n<a,,a,>=S-‘(a,,a2)K(a,,a2) (1.2) 

which, when 1 al 1, 1 a2 I -+ 00, has the representation 

II(a,,a,)= I + O(U-~) 

where I is the identity matrix. The following matrix has a similar property 

da,, a2)= lWaI,a2)= K-'(a,, a2) S(al,a2) (1.3) 

We construct the following matrices 

whose elements are rational functions which approximate the elements of the matrices II and n: on the 
real axis 

II mn -II;, =P (a,,a,)P*-'(u) mn , 7c mn &” = ~~,tq,a2)x0-‘b4) 

and we will introduce the following matrix 

K. = KU’-’ (1.4) 

which, while possessing the asymptotic properties of the matrix K, includes all features ignored in n* 
including branching points. We will further assume that the polar sets of the matrices n and rr, as well 
as II* and m*, are defined by the relations 

af+a~=t~ and af+a$=c:, k=1,2,...,M. 
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Lemma [l]. Suppose the vector function q(xl, x2) E L,(Q), p > 1 has a carrier in the convex 
region 52. In order that the vector function (V(a,, a& and V-‘(x1,x2) are the direct and inverse Fourier 
transformation) 

should possess this property, it is necessary and sufficient that the identity V(ai, a2)q = 0 holds in the 
polar set of the function II(ai, a~). 

Following the approach developed earlier [-31, the solution of system (1.1) will be sought in the 
form 

q(~,,~:!)=qo(~,,~*)+g(x,,~2), g= ~~cl&(X,.x,) (1.5) 

Heregk is a set of certain functions, defined in the region S& and C, = { C;>T= t are vectors which satisfy 
the condition 

V(a,, a2)q = V&q, a2)g, n*Wq, a2)qo = 0 (1.6) 

aT+at=zi, k = 1,2,...,M 

After substituting expressions (1.5) into system (1.1) taking Eq. (1.4) into account, we obtain, after 
some reduction, the system 

k,t= 1 J Ko(a,,a2)T(a,,a2)e~"~1at~x2az~da,da2 = f(x,,x,)-$‘g 
2 

Cifl 
6 r2 i=l &=I 

(1.7) 

in the new unknown function 

‘Wq, ad = Wal, a2)Wat9 a2)qo (1.8) 

Here 

fc (~19 ~2 ) = jj kni (XI - 5. x2 - mzk (5? wthl 
R 

It follows from relation (1.8) that 

q. = V-‘m*Vt, t(x,,x2)= V-‘(x,,x2)T (1.9) 

the same region as t. Hence, the following relations must be satisfied in the polar set n*(al, a$ 

T(a,,ad=O (1.10) 

From relations (1.5), after introducing expressions (1.9), we obtain the final form of the Fourier 
transformant of the solution of system (1.1) 

Q(a,, W = =*(aIv MUal+ a,) + V(a,, adg (1.11) 

We obtain the solution of system (1.1) by applying to expression (1.11) the Fourier inversion 

q(x,, x2) = V-wvt + g (1.12) 

Remark 1. When investigating the dynamics of massive bodies and mechanical and electromechanical systems which 
interact with thermoelastic or electroelastic media, it is sufficient to calculate the integral characteristics of the 
problem (the response of the medium to the action of a punch, the thermal flux through the contact region, the 
charge, etc.). There is no need to calculate the density of these characteristics (the contact stresses, the thermal 
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flux density, the charge density distribution, etc.). In this case it is best to use formula (1.11) making the substitution 

a, =a2=0, gk=6(x,-xjC,x2-x$) 

Herexf,xg are the coordinates of the vertices of the rectangles dividing the region Sz. 
2. Representation (1.12) holds for g E L,,(a). When using a system of &functions in relations (1.5) it is best 

to introduce the operator [l] 

Expression (1.12) then becomes 

2. SOLUTION OF THE SYSTEM 

We will seek a solution of system (1.7) in the form 

N 4M2 

t(n,,X~)=t&,..g- c c C$‘,(X,J*) 
i=l t=, 

(2.1) 

where to and tf satisfy the equations 

k,t = f(x,, x2), k,-,t: = f; (2.2) 

We introduce two systems of basis (coordinate) functions ~~(xr, x2) and cpk(xl, x2), specified in the 
region Q and possessing completeness [5]. We will represent the approximate solutions of Eqs (2.2) in 
the form 

h(xIJ*)=~, iLWm(x,~x2)? t’,(x,J2)= i f&V&,.X*) (2.3) 
m=l 

where B,,, = {&}~t and Bim = {p$m>gI (m = 1,2 , . . . , L) are vectors of dimensional@ N. 
Substituting the first expression of (2.3) into the first equation of (2.2) and using the Bubnov- 

Galerkin method and changing the order of summation, which is related to the transition from vectors 
of dimensionality N to vectors of dimensionality L, we obtain the matrix system 

5 A”jPj = F”, n = 1,2,..., N (2.4) 
j=I 

Here K$ and f” are the components of the matrix K, and the vector f, Y,,l(al, az) and @(a,, a2) 
are the Fourier transformations of the functions ~&r, x2) and cp&r, x2), and the asterisk denotes a 
complex-conjugate quantity. 

Acting in the same way with the second expression of (2.3), we arrive at the matrix system 

i A”@ = Fc, n = 1,2,..., N, k=l,2 ,..., 4M2 (2.5) 
j=l 
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Systems (2.4) and (2.5) are systems of equations of order N with matrix coefficients in N unknown 
vectors of dimensionality L. The comparatively low order of matrix systems (2.4) and (2.5), related to 
the dimensionality of the initial problem, enables us to separate the problem into two stages, solving 
these systems initially for the unknown vectors in analytical form and obtaining iV algebraic systems of 
order L, and then using numerical, methods to solve the latter. 

The elements of the matricesA”l are calculated once. The remaining actions in calculating the whole 
set of vectors pi, and pr reduces to successive multiplication of these matrices and their combinations 
by the vectors F’ and Fr . The use of this approach to solve a system of two equations with two unknowns 
will be described below. 

We will assume that the solutions of systems (2.4) and (2.5) have been obtained and that the functions 
to and t; have been constructed. Substituting expression (2.1) into (1.9) we obtain a system of Nx 4M2 
equations for obtaining the coefficients C;. 

N4M' 

To(a,,a2)- C C CiTi(a,,a,)=O, a: +a; =l,f, k=l,2,...,M 
i=l &=I 

(2.6) 

3. EXAMPLE 

As an example, we will consider a system of integral equations which are typical when investigating, in 
the two-dimensional formulation, coupled mixed problems of electroelasticity for piezoactive crystals 
of class 6 mm or piezoceramics, 

7 k(x, -&o)q(@& =f(x,), 
--(1 

Ix, 16 a; k(s,w)=&j K(a)eimda 
I- 

(3.1) 

where K(a) is a second-order matrix function whose elements are even functions having the same 
poles, and also branching points on the real axis; the following representations hold as a + M 

K,,(a)=c, Ial-'[l+O(a-')I, K,,(a)=K,,(a)=b(a(-‘[l+O(a-‘)I (3.2) 

Bearing expressions (3.2) in mind, we introduce the following matrix 

S(a)=(a2 +B2)-% 2 
II II 

i 
2 

the elements of which must only possess asymptotic properties of the corresponding elements of the 
symbol K(a). Matrices (1.2) and (1.3) in this case take the form 

ll, =lIoR,,j+ Xnj =xornj, rnn = RJ-,,3-,,, rnj =-R,,j. nf j, n,j=1,2 

R,,(a)=c2K,,-bK2,, R,,(a)=c,K,,-bK,,, n=1,2 

n _daV I 
0- A ’ =O = II@(a)' 

D(a) = K, , $2 - Kf2, A = c,c2 - b2 

(3.3) 

By construction n,(a) are even functions, IIn,, (a) -+ 1 + O(a-I), n,(a) + am2[1 + O(a-‘)I (n # j) 
when a + f =J; they have zeros -+Yknj(k = 1,2, . . . , Nnj) and also the same poles +zk(k = 1,2, . . . , M). 
The elements 7C,j possess similar properties, and have zeros *pknj(k = 1, 2, . . . , Nnj), where &rr = yk22, 
b22 ;pll~ pk12 = 1/k12, pk2l = Y k21, and also the same poles ?ck(k = 1, 2, . . . , hi). In both cases 

> ,I, . 
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We will approximate II,(a) and qj(o) by the rational functions 

II:,( a (a2 -v:,)~ (a2 -.Zl)-’ 
&=I &=I 

n;(a)=3 (a2 -&)fi (a* -c:)-‘, Nnj = 
M, . n=/ 

&=I &=I M-I, n#j 

We will seek a solution of Eq. (3.1) in the form 

(3.4) 

(3.5) 
&=I 

where X: are the coordinates of points which divide the segment [-a, a] into equal parts. It can be seen 
that the function g satisfies relations (1.6). 

After reduction, involving substituting expressions (3.5) into system (3.1) and a subsequent change 
in the order of summation, we arrive at the following system 

k,t = f(x, ) - ‘f [C;f; + C,2f,2 1 
k=l 

in the new unknown function 

t(x,) = V-‘(x, )ll*(cW(a)qo 

By virtue of the linearity, we will seek a solution of system (3.6) in the form 

t(x,)=t&,)-ZZM IC;f:cq)+C;f:(X,)I 
&=I 

where to and t! satisfy the systems 

(3.6) 

(3.7) 

(3.8) 

k,t = f(x,), koti= f;: (3.9) 

We will introduce two systems of basis functions ~JJ,,&x~) and cp,(xr) (m = 1, 2, . . . , L), possessing 
completeness and defined in the segment [a, a]. We will represent the approximate solution of systems 
(3.9) in the form 

to(xl)= ii P,w,Cx,h tl(x,)= i S~,w,(x,) 
m=l m=l 

(3.10) 

where p, = {Pk, Pi > and km = { fi,&, , p,& } are unknown coefficients. 
Substituting the first expression of (3.10) into the first equation of (3.9) and using the Bubnov- 

Gale&in method, after reduction with respect to the change in the order of summation, we arrive at 
the system 

A”‘@ +An2p2 = F”, II = 1,2 

A”j =II AZ II:,=, , A$ = j K~(a)Y’,(a)@~(a)da 
I- 

(3.11) 

p’ = {P’,,;,,, F” = iF;“$+ F,” = 7 f”(~,)W,(+q. (n = 1.2) 
-co 
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Here ‘Y,(a) and Q(a) are Fourier transformants of the basis functions. 
We will represent the solution of system (3.11) in the matrix form 

281 

pi =A+ _A”-‘A’2B2, 92 =B@ _&‘A”-‘Pi] (3.12) 

B = [A22 _ A2tA11-‘&2]-1 

Acting in the same way with the second expression of (3.10), we obtain the system 

which is also a system of equations with matrix coefficients and which differs from (3.11) only in the 
right-hand sides. Its solution has the form 

St = Ai’-‘F;i _Alt-‘A’@i2 L , f3L2 =B.[Fi2 _A2’A”-‘Ff] (3.14) 

Hence, the fundamental problem of solving system (3.7) has been reduced to constructing the matrices 
Aij(i, j = 1, 2, .:., N), ,and to calculating A;: and B. The remaining actions to determine the whole 
set of vectors B’ and Br reduces to successive multiplication of these matrices by the vectors F’ and 
F$’ and their combinations. 

The Fourier transformant of the solution of Eq. (3.1) has the form 

Q(a) = Wa)T(a) + V(Wg 

The coefficients Ci are found from the relations 

(3.15) 

2 2M 

T,(a)-C C CiTi(a)=O, a, =&, k=l,2,....M 
i=l &=I 

(3.16) 

Applying an inverse Fourier transformation to expression (2.15) we obtain 

q(x,) = V-wvt + g 
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